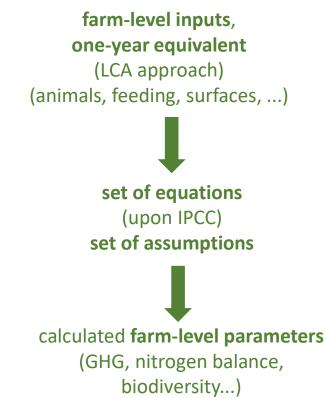


CAP'2ER SECTION

(to be used in FRANCE, ITALY and ROMANIA) also in SPAIN (upon advisers' choice)

4.a. presentation of the tool (Cap2ER) & the assessment process


Two levels of assessment in CAP'2ER®

CAP'2ER[®] Level 1

A simplified analysis 30 activity data / 1 hour to collect data and to present results to farmers To develop an observatory To highlight the link between practices and environment

CAP'2ER[®] Level 2

A Complete analysis 150 activity data / half day/one day to collect data and to present results to farmers To simulate mitigation practices To build individual carbon action plans

Farm assessment process – how it works:

- the advisor* visit a farm or get in contact with a farmer (e.g. phone / on-line)

*previously trained to collect data, fill in data (on paper, in Excel, in CAP'2ER), interpret the results)

- collect input data: 30 data for Level 1 (in Demo farms) or 150 data for Level 2 (in Innovative farms)

- get the diagnosis and explain it to the farmer (printer-friendly pdf).
- draw conclusions + identify measures (adapted feeding strategies, etc.) to be taken in order to:
 - reduce farm-level GHG
 - maintain / increase the farm efficiency
- explain the demo farmers the benefits of applying the identified optimisation measures
- explain & assist the innovative farmers on applying the identified optimisation measures (action plans)

Demo farms:

- first round of assessments (2022)
- targeted by dissemination / awareness / promo actions
- second round of assessment (2024)

Innovative farms:

- first round of assessments (2022)
- implementation of measures / mitigation plans
- monitoring throughout the project

Before the meeting with the farmer

For easy questioning the <u>farmer should be asked to prepare</u>:

- **Documents** for the **inputs** used along the year (e.g. purchased animals, feed, fuel)
- Herd registers (e.g. lambing, artificial inseminations)
- Milk/meat production records
- Fertilizations applied along the year
- Manure data (bought/sold)
- etc

Also, the <u>advisor should get prepared</u>:

- Know very well the tool to be used
- Know the averages of a typical local farm (e.g. milk yield, animals: surface ratio, etc.)
- Know the normal range of the sheep breed parameters (e.g. feed intake, live weight..)
- Know the conversion factors (milk to cheese, milk consumption by lambs, ...)
- etc.

4.b. Data collection (sheep data only)

GENERAL ADVICES during data collection:

- be prepared to cope with misunderstandings
- focus on essential inputs
- be efficient (don't interview longer than needed)
- collect as much as possible (esp. Level 2)

& after the data collection:

- hand your data to the person doing data processing

or

- proceed with the software run
- don't forget to give the farmer a feed-back

Specific advices for the data collector:

- ail the input data = one year basis (calculations needed)

- know the sheep farm basis: - the usual animal load / surface

- the **average** milk production (for the area, production system, race...)
- the usual feed consumption
- the common/widespread feeding strategies in the area

- **be prepared for conversions**: e.g. milk production is sold as cheese, the farmer report the cheese sells => milk: cheese yield ratio to be used to convert in litres of milk (/head, /farm...)

- be prepared to extrapolate the feed consumption / head / season => whole year, whole farm (if data are not available)

- ask supplementary questions when you notice biases / errors
 - e.g. declared milk production way too low
 - e.g. way too many / way too few animals / a certain surface

(maybe it's real => look for the reason / but maybe it's a misunderstanding => clarify)

Pay attention – input data are clustered

SURFACE DATA:

Utilised Agricultural Land (UAL)	25.4	ha
Natural grasslands	25.4	ha
Temporary grasslands	0.0	ha
Forage crops	0.0	ha
Annual crops	0.0	ha
Other areas	0.0	ha
Individual pastoral areas	13.6	ha
Collective pastoral areas	9.2	ha
Additional areas	0.0	ha
Total livestock Unit (LU) on farm	47.0	

WARNING:

- only surface for sheep
- clarify collective areas

WARNING:

check whether the values are within the range of breed / production system:

- male/female ratio
- culling rate
- prolificacy

ANIMALS DATA:

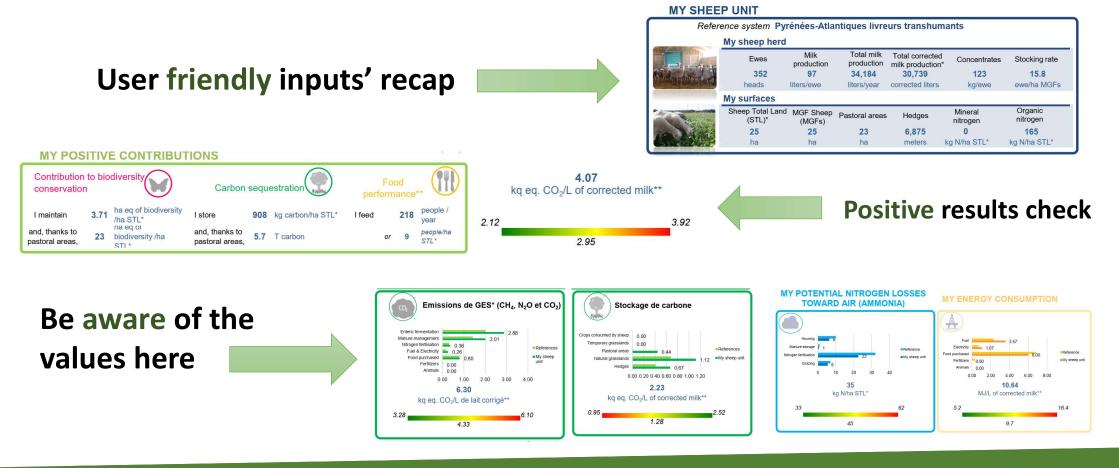
Milk sheep herd		
Main breed	Manech tête rousse	
Number of ewes	352	heads
Number of rams	0	heads
Number of renewal ewe lambs	50	heads
ncluding number of purchased ewe lambs	0	heads
Number of sold milk lambs	189	heads
Average weight of milk lambs	11.0	live weight/lamb
Prolificacy rate	103%	%
Total annual sheep milk production	34,184	liters/an
Fat content	65.7	g/l
Protein content	51.2	g/l

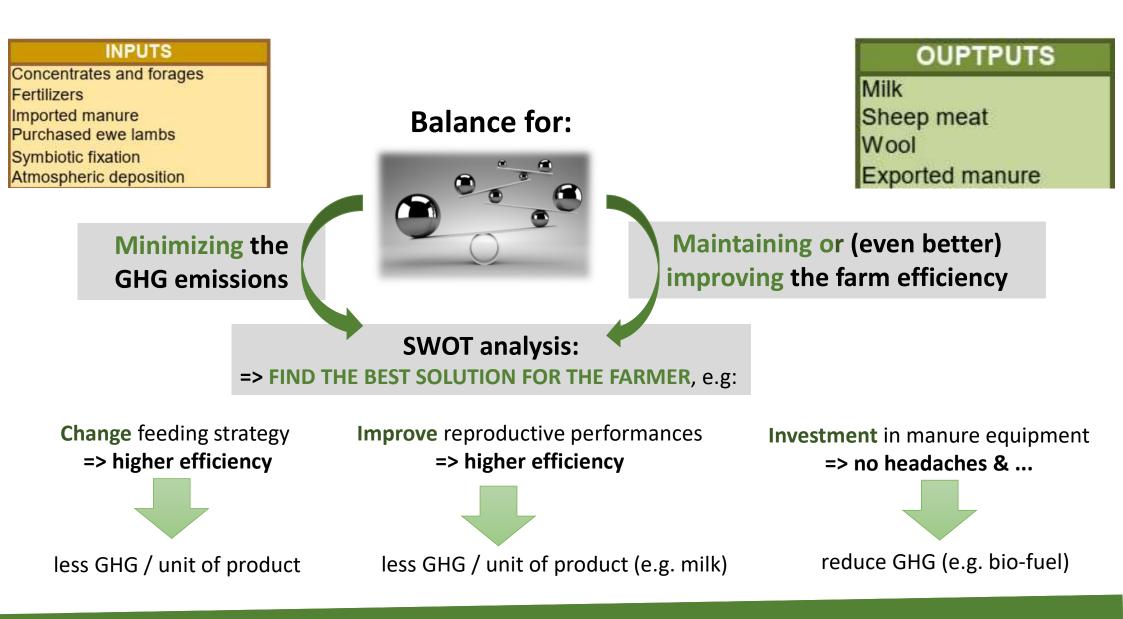
Pay also attention to the 3F:

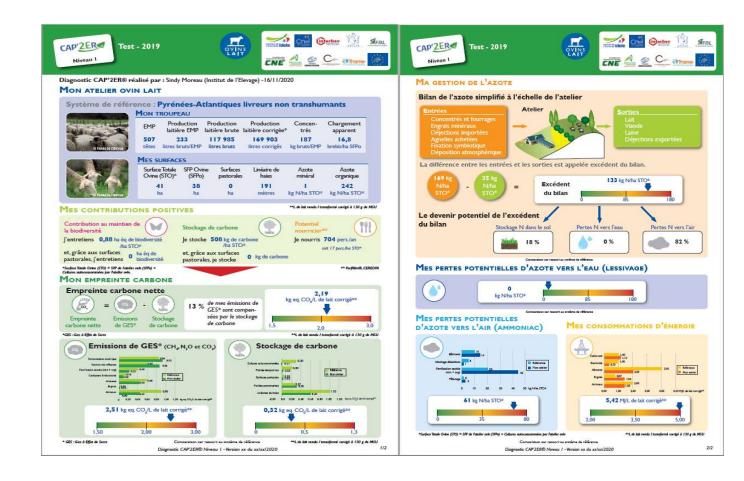
FEED/FERTILIZATION/FUEL DATA

Inputs used by sheep herd		
Electricity consumption	4,874	kWh/year
Fuel consumption	3,699	liters/year
Mineral nitrogen used	0	unit N/year
Organic nitrogen imported	0	unit N/year
Purchased concentrates	43.4	tons/year
Including cereals	23.7	tons/year
Including soybean meal	0.0	tons/year
neep concentrate - Protein content <=20%	8.0	tons/year
heep concentrate - Protein content >20%	10.6	tons/year
Including dehydrated concentrates	0.0	tons/year
Including minerals and vitamins	1.03	tons/year
Purchased forages	28.0	tons DM/year
Including dehydrated forages	2.0	tons DM/year
Purchased straw	9.0	tons/year

WARNING:


Breed characteristics


- feed intake / category
- protein % by age


Electricity and fuel = **only** for sheep

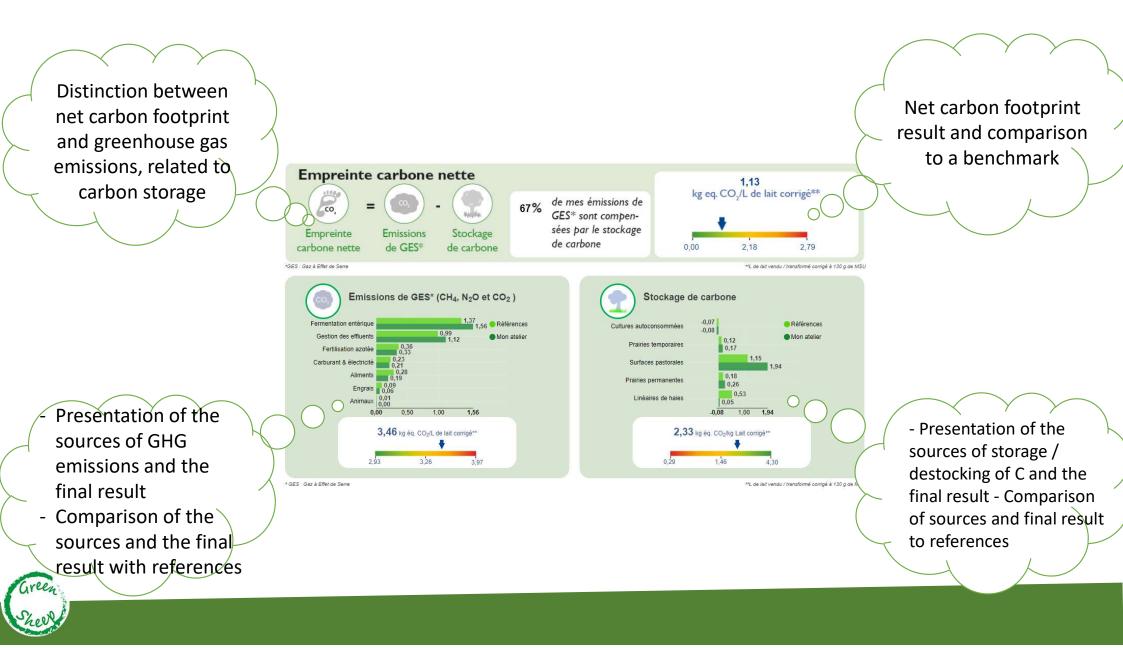
4.c. guidelines on the results analysis and interpretation (Cap2ER) (Results and Solutions)

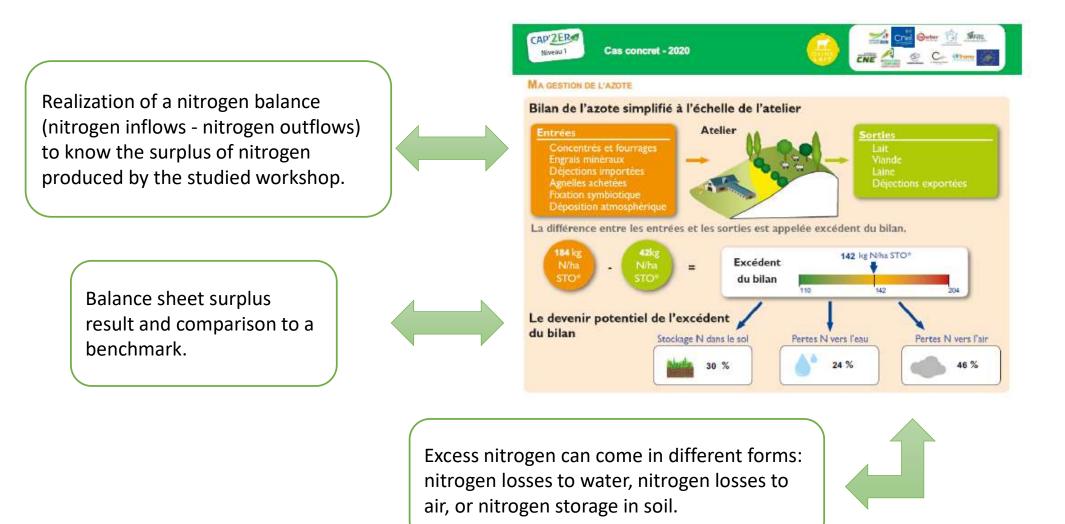
a brief (two-A4 pages) nice looking & **condensed report**

which has **to be explained to the farmer**

which (beside the inputs) is **the base for mitigation measures**

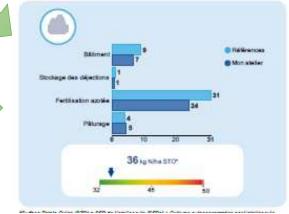
which can be printed / forwarded, etc.


A detailed presentation of the studied farm: number of animals, production, surfaces, etc.



tittes litres bruts/EMP litres litres litres litres bruts/EMP litres litres bruts/EMP <th></th> <th>500</th> <th>luction F re EMP la 225</th> <th>112 266</th> <th>Production laitière corrigée^{##} 108 812</th> <th>319</th> <th>Chargement apparent 17,6</th>		500	luction F re EMP la 225	112 266	Production laitière corrigée ^{##} 108 812	319	Chargement apparent 17,6
Surface Totale SFP Ovine Ovine (STO)* Surfaces (SFPo) Linéaire de pastorales Azote haies Azote minéral Azote organique 42 36 0 1 496 6 161 ha ha ha ha mètres kg N/ha STO* kg N/ha STO Stockage de carbone la biodiversité J'entretiens 1.1 ha éq de biodiversité/ ha STO* Stockage de carbone je stocke Potenbel nourricier=** grâce aux 0 ha éq de et grâce aux 00 T de meteres sat 17pers/hor ST	Chine and	tetes litres b	ruts/EMP	litres bruts	litres corriges	kg bruts/EMP	brebis/ha SFPo
ha ha ha mètres kg N/ha STO* kg N/ha STO Mes contribution au maintien de la biodiversité l'entretiens 1,1 ha eq de biodiversité/ je stocke 440 kg de carbone ha STO* je stocke 440 kg de carbone ha STO* je stocke 440 kg de carbone ha STO* je nourris 693 pers./an sat 17 pers./as ST	2.4	Surface Totale	SFP Ovine			10000	Azote organique
Mes contribution au maintien de la biodiversité l'entretiens 1,1 ha éq de biodiversité/ je stocke 440 kg de carbone ha STO* et grâce aux 0 ha éq de et grâce aux 0,0 T de mahares						-	
Contribution au maintien de a biodiversité 'entretiens 1,1 ha éq de biodiversité' je stocke 440 kg de carbone ha STO* et grâce aux 0 ha éq de et grâce aux 0,0 T de grabere						7	
ha STO* (ha STO* sait 17 pers./so ST et grâce aux 0 ha éq de et grâce aux 0.0 T de mehore	Contribution au ma	0	Stockag	ge de carbone			- (11
et grâce aux 0 ha ég de et grâce aux 0.0 T de enderer	l'entretiens		6/ Je stock	œ		a new concernance of	
					0.0 T de carbone		son an persona si on
							N

Positive contributions: contribution to maintaining biodiversity, carbon storage, food performance and Contribution of pastoral areas



Potential nitrogen losses to air (ammonia): Nitrogen losses to the air include emissions of several nitrogen gases: NH3 (ammonia), but also N2O (nitrous oxide), NO (nitrogen monoxide) and N2 (dinitrogen). This graph only shows nitrogen losses to the air in the form of ammonia (NH3). The NH3 emission items and the overall result are presented, then compared to references, for an equivalent system

"Potential Nitrogen Losses to Water (Leaching)" expressed per ha UAA used by the herd

Fossil energy consumption:

Presentation of the sources of energy consumption and the final result,

Comparison of sources and final result with references (with equivalent system)

Don't forget to do the follow-up...

first of all – these assessments (farm reports) are the base for action plans, national policies (e.g. subsidies), ...

But also an interest for the farmers – e.g. identification of the sources of inefficiencies (e.g. feeding inefficiency) & for the advisor – e.g. better "know the farm" (in a systematic way) / comparisons with the average

e.g. <u>high Nitrogen losses</u> = inefficient use of dietary proteins, high specific consumption / product unit, high costs / products unit, economic losses etc.

advices to the farmer, for a better use of nitrogen feeds (which, btw, are expensive)

e.g. identify the <u>outliers in the input data (comparing to other farms in the area / using same breed)</u>, and discuss the with the farmer, e.g.

"your reproduction parameters are lower than normal, this leads to both high GHG and economic losses..." "let's find a way to improve them..."

and therefore make sure there's a win-win situation...