Teagasc sheep life cycle assessment (LCA) model

Teagasc Sheep LCA – How it works

Life cycle inventory

Model operates:

- Over one production year
- Monthly time step
- 5 animal categories
- Mature ewe
- Hogget
- Lambs
- Replacement lambs
- Rams

Life cycle inventory

Sheep specific emissions

- Driven by sheep system inputs
- Concentrate feed
- Synthetic fertiliser use

General farm emission sources:

- Agricultural lime
- Fossil fuel use
- Energy consumption
- Chemicals

Model Input Interface – Part 1

	А	В	С	D	E	F	G	Н	1	J	К	L	M	N	0
1	Farm Name														
2															
3			Farm												
1	Farm size	ha	- unit												
5	10111 5120	па													
6	Production		Sold	Purchased											
7	Live weight	ka	ooid	T di ci la sca											
8	Carcass weight	ka													
9	Wool	ka													
10															
11	Housing and grazing														
12	Turnout	Date													
13	Housing	Date													
14												-			
15	Breeding														
16	Ewes joined to ram	no.													
17	Ewe weight	kg													
18	Scanning rate	lambs/ewe													
19	lambing rate	lambs/ewe													
20	Weaning rate	lambs/ewe													
21	Replacement rate	%													
22	Age at first lambing	months	24												
23															
24				Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
25	Lambing pattern	NO.													
26															
27	Inventory		Average	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
28	Mature ewe	no.													
29	Ewe lambs (0-12 months)	no.													
30	Lambs (0-12 months)	no.													
31	Year old (13-24 months)	no.													
32	Rams	no.													

Model Input Interface – Part 2

1	А	В	С	D	E	F	G	Н		J	K	L	M	N	0
1	Farm Name														
33															
34	Purchase		Total	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
35	Mature ewe	no.			0	0	0	0	0	0	0	0	0	0	0 0
36	Lambs (0-12 months)	no.			0	0	0	0	0	0	0	0	0	0	0 0
37	Year old (13-24 months)	no.	9		0	0	0	0	0	0	0	0	10	0	0 0
38	Rams	no.	1		0	0	0	0	0	0	0	0	1	0	0 0
39							Č.,	Sec.							
40	Sales		Total	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
41	Mature ewe	no.	9		0	0	0	0	0	10	0	0	0	0	0 0
42	Lambs (0-12 months)	no.	140		0	0	0	0	0	0	140	0	0	0	0 0
43	Year old (13-24 months)	no.			0	0	0	0	0	0	0	0	0	0	0 0
44	Rams	no.	1		0	0	0	0	0	0	0	0	1	0	0 0
45															
46	Fertiliser														
47	Nitrogen	kg N/ha	79.9			_									
48	CAN	% N	80												
49	Urea	% N	20			10.00									
50	Protected urea	% N	0												
51	Phosphorus	kg P/ha	12.1												
52	Potassium	kg K/ha	24.1												
53	Lime	tonnes/ha	0												
54	-														
55	Concentrate feed														
56	Ewe concentrate	kg	7200												
57	Lamb concentrate	kg													
58	- 0. A														_
59	Feeding rate		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
60	ewe	kg/day													
61	lamb	kg/day													
62	Hogget	kg/day													
63	Ram	kg/day													
64	10														

Model Input Interface – Part 3

	File	Home	Insert	Page	Layout	Forr	nulas	Data	Rev	iew	View	v	₽ T	ell m	ne wl	hat y	ou v	want	to c	lo		
A96 $-$: $\times - f_x$ Ploughing																						
																						104
	1.20		A			В		С		D		E		F		G		н		<u> </u>	J	
1	Farm N	lame																				
65	Housing typ	pe																				
66	Slatted hou	using			%																	
67	Outpad/dry	/lot			%																	
68	Straw bedd	ling			%			100														
69																						
70	Manure ap	plication																				
71	Spring				%																	
72	Summer				%																	
73	Autumn				%																	
74																						
75	Forage						Import	ed	Expo	ted												
76	Grass silag	je			tonr	ne		2.	5		Ha	У										
77	Maize silag	e			tonr	ne																
78	Wholecrop	silage			tonr	ne																
79	Hay				tonr	ne																
80	Straw				tonr	ne																
81	Milk replace	er			kg																	
82									- (34)													
83	Fossil fuel																					
84	Diesel				L			37	9													
85	Petrol				L																	
86	Gas				m3																	
87	Oil				L																	
88	Electricity				kwh			102	5													
89																						
90	Contractor	1.1					-															
91	Fertiliser s	preading			ha																	
92	Siurry appl	ation			na																	
93	Silage cutti	auon			ha																	
05	Silage han	resting			ha				3													
96	Ploughing	reating			ha				0													
97	Harrowing				ha																	
98	Reseeding				ha																	
99	Hedge cutt	ing							- 24													
100	A CONTRACTOR																					

101

Teagasc LCA Process

Animal emissions are

Driven by feed intake

Computation of monthly net energy requirement for:

Ewe and hogget

Maintenance	$(UFL/d) = (0.033 \times LW^{0.75}) \times AA$						
BCS gain	(UFL/d) = LW×0.13×5.6×BCS gain						
BCS loss	(UFL/d) = LW×0.13×4.36×BCS gain						
Milk production	(UFL/d) = MY×((0.0071×PC)+ (0.0043×FC)+0.2224)						
Where MY=milk yield (kg/d); PC=protein content (%); FC=fat content (%); LW=live weight (kg); and AA=activity allowance							

Lamb

Maintenance

(UFL/d) = 0.033*(LW^0.75) (UFL/d) = 3.42*LWG

Where LW=live weight (kg); and LWG= liveweight gain (kg/day)

Live weight gain

Life cycle inventory

Direct methane emissions		-	
Enteric fermentation	GEI%	7	IPCC (2019)
Enteric fermentation	GEI%	6.7	IPCC (2019)
Enteric fermentation	GEI%	6.3	IPCC (2019)
Manure excreted at pasture	kg CH4/kg VS	Bo 0.19; MCF 0.47%	IPCC (2019)
Solid manure housing	kg CH4/kg VS	Bo 0.19; MCF 2%	IPCC (2019)
Direct nitrous oxide emissions			
Solid manure storage	kg N2O-N/kg N	0.01	IPCC (2019)
Dung at pasture	kg N2O-N/kg N	0.0004	IPCC (2019)
Urine at pasture	kg N2O-N/kg N	0.004	IPCC (2019)
CAN fertiliser application	kg N2O-N/kg N	0.0149	Harty et al (2016)
Urea fertiliser application	kg N2O-N/kg N	0.0025	Harty et al (2016)
Direct carbon dioxide emissions			
Diesel use	kg CO2 / L	2.91	EPA (2019)
Indirect nitrous oxide emissions			
Housing ammonia emissions solid manure			
system	kg NH3-N/ kg TAN	0.168	EPA (2019)
Solid manure storage	kg NH3-N/ kg TAN	0.35	EPA (2019)
Solid manure spreading	kg NH3-N/ kg TAN	0.68	EPA (2019)
Grazing	kg NH3-N/ kg TAN	0.06	EPA (2019)
CAN fertiliser application	kg NH3-N/ kg N	0.08	EPA (2019)
Urea fertiliser application	kg NH3-N/ kg N	0.159	EPA (2019)
Nitrate leaching	kg NO3-N/ kg N	0.1	EPA (2019)

Life cycle impact assessment - GWP

- Environmental impact of animal production can be measured as global warming potential (GWP), acidification potential, eutrophication potential, photochemical ozone creation potential, ozone depletion potential and energy use and land use.
- Global warming potential shows how much heat trapped in the atmosphere and it is usually reported as carbon dioxide (CO_2) equivalents (CO_2-e) .
- It measures accumulative warming over 100 years period of time which resulted from a unit of the gas mass produced at the beginning of a 100 years reference period.
- Greenhouse gas emissions are calculated for biogenic greenhouse gases: CO₂, methane (CH₄) and nitrous oxide (N₂O).

Life cycle impact assessment - GWP

- The GWP of CO₂ is 1, where CH₄ has GWP of 28, while GWP of NO₂ is 265 (IPCC, 2014).
- That means that, each kg of emitted CH₄ absorbs the same quantity of heat as would 28 kg of emitted CO₂, while one kg of N₂O absorb the same amount of heat as would 265 kg of CO₂ over a 100 years period of time.
- Greenhouse gases directly affect overall global temperature and causing climate change. It is predicted that after complete termination of net emissions of CO₂ the effect of global warming will last hundreds if not thousand years, unless a large quantity of net CO₂ is removed over an extended period of time.

Model Outputs - Example

	CO2	CH4	N2O
Enteric fermentation	С	42705.74	0
Manure housing and storage	С	275.0653	1872.245
Manure spreading	C	0	1502.24
Grazing	C	202.4159	1974.361
Fertiliser application	814.104	0	6074.719
Ammonia emissions	С	0	1077.994
Nitrate leaching	С	0	1427.197
Concentrate feed	2123.41	45.70376	632.2698
Fertiliser production	3500.921	143.958	293.9123
Fossil fuel	1764.664	29.2345	97.10418
Purchased animals	1107.415	2730.388	1226.208
Purchased forage/bedding	328.5133	62.37497	360.69
Other	459.5506	9.484869	4.512007
Total	10098.58	46204.37	16543.45
Contribution (%)	0.138628	0.634271	0.2271

