LIFE GREEN SHEEP : for a low carbon and sustainable sheep farming

2nd EU Webinar

November, 20th 2023

LIFE19 CCM/FR/001245 - LIFE GREEN SHEEP

Welcome to you!

Small tips for a confortable meeting on Teams

- Ye is a under the set of the se
- **X**: to see the presenter, please also turn off your camera
- (in case your internet speed is not enough to receive the sound, you may attend the webinar by phone.
 - The phone number and the code for the meeting are available in the chat. You will also find them in the email you have received with the link to connect.

November, 20th 2023

Other informations...

- if you have any question during the presentation, you may write your message in the chat.
 - The chat is moderated and questions will be asked to the speakers at the end of their speech. In case there are a lot of questions, there will be a selection.
- **CORECJ**: all the presentations of the webinar will be soon available on the Green Sheep website, as well as the recording of the webinar.
 - An email will be sent later to inform you of the release.

: a short survey will be launched at the end of the webinar. Please, spend 2 minutes to give your feedback!

Programme of this webinar

Overall presentation of the LIFE Green Sheep project

Harmonization and comparison of GHG emissions assessment tools

Determining carbon footprint of sheep farms in Europe: first results !

Testing mitigation actions to reduce GHG emissions from sheep farming in Europe

« How to disseminate the project results and inform farmers and advisers widely ? »

Conclusion

November, 20th 2023

Overall presentation of the project

Sindy Throude – Institut de l'Elevage (France) – Project manager

sindy.throude@idele.fr

Key figures of the project

LIFE GREEN SHEEP IS:

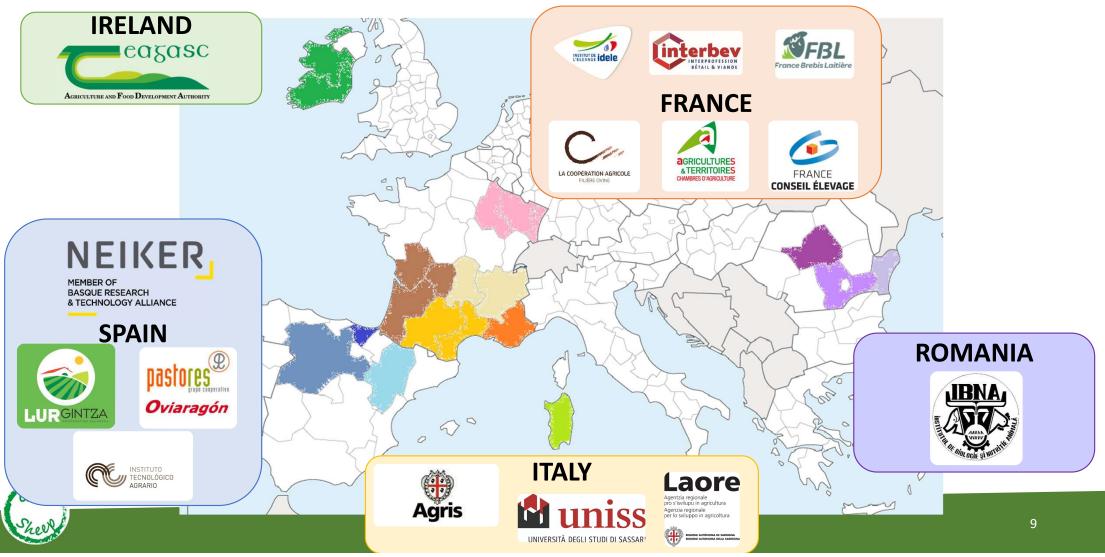
European project, from October 2020 to September 2025

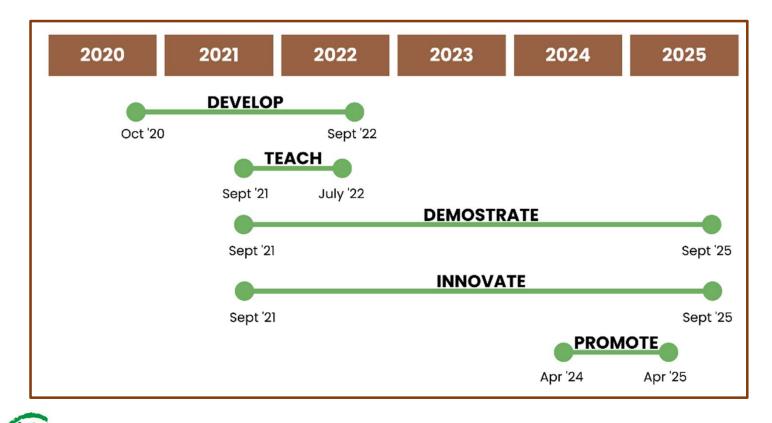
innovative farms involved in the implementation of action levers

Objectives of the project

Reduce by 12% the carbon footprint of milk and meat produced in sheep farms Launch a national and European dynamic progress initiative to reduce greenhouse gas emissions while ensuring sustainability of sheep farms

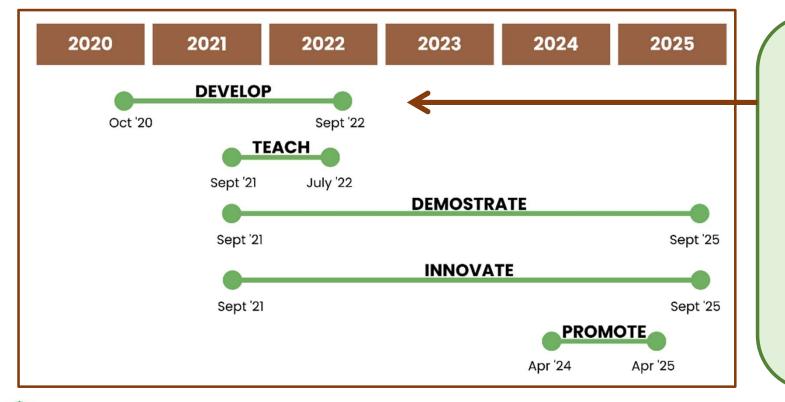
Create an national and European observatory of environmental and sustainable performances of sheep production systems


Promote innovative practices associated with GHG emissions mitigation to ensure the economic, environmental and social sustainability of farms

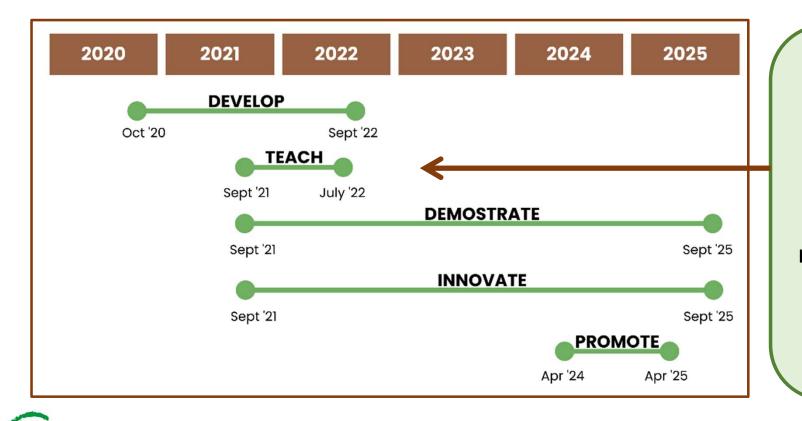

Train current and future generations

November, 20th 2023

The LIFE Green Sheep partnership



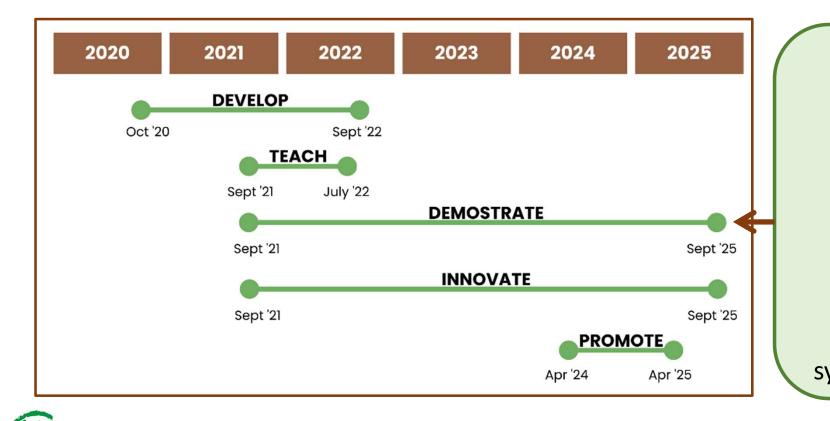
November, 20th 2023



Action 1 : DEVELOP

Review, benchmark and harmonize the tools for evaluating GHG emissions and sustainability indicators at a European scale

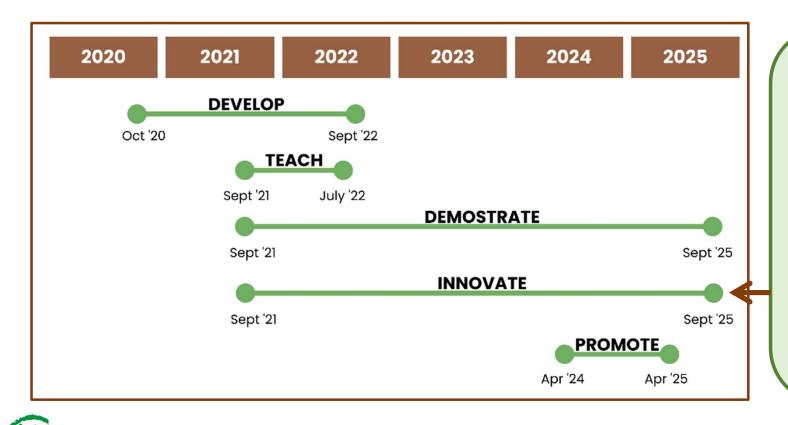
November, 20th 2023



Action 2 : TEACH

Raise awareness and train advisors and technicians on the tools: background, methodologies, analysis of the results and construction of action plans

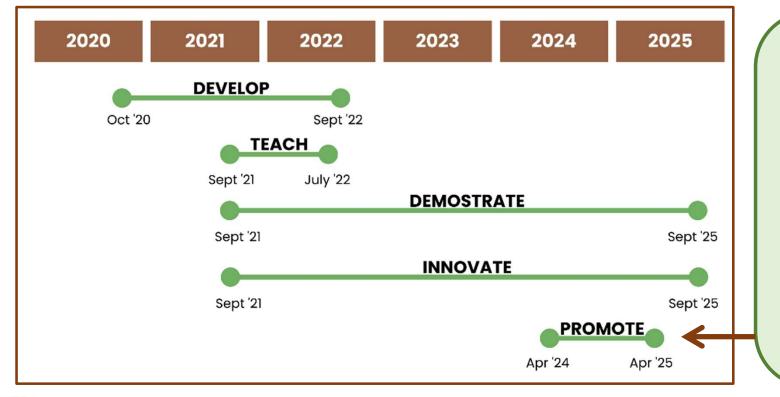
November, 20th 2023



Action 3 : DEMONSTRATE

Creation of an EU observatory of environmental and sustainability performance and reference sheets (results by type of system and by region)

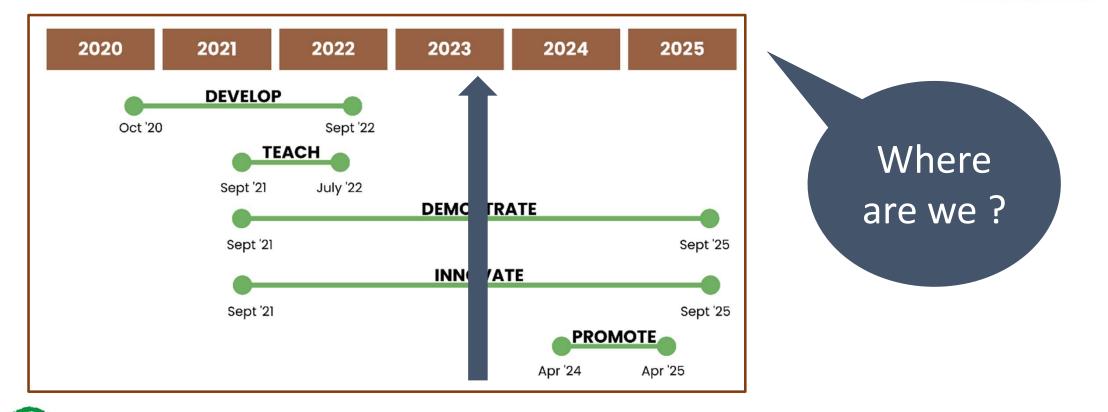
November, 20th 2023



Action 4 : INNOVATE

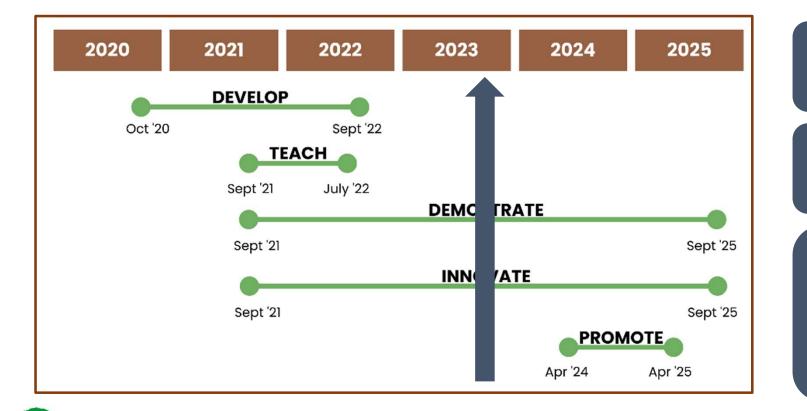
Development and promotion of lowcarbon farms by demonstrating the feasibility of action levers in real conditions

November, 20th 2023



Action 5 : PROMOTE

Synthesis of all the knowledge acquired through this project


Definition of the national communication strategy and the partnerships to be built for the deployment of a low carbon plan

Creen Sheet November, 20th 2023

Green November, 20th 2023

Action 1 DEVELOP : Almost done !

Action 2 TEACH : Done !

Actions 3 & 4 DEMONSTRATE & INNOVATE : 1st wave : Almost done !

Green November, 20th 2023

How to follow us ?

Website : <u>https://life-green-sheep.eu/</u>

• Facebook : <u>https://www.facebook.com/life.green.sheep</u>

• X : <u>https://mobile.twitter.com/LIFEGREENSHEEP1</u>

Instagram : <u>https://www.instagram.com/lifegreensheep/</u>

• Subscribe to our newsletter : <u>here</u> !

November, 20th 2023

Harmonization and comparison of GHG emissions assessment tools

Alberto Atzori – UNISS (Italy) – Action 1 leader

asatzori@uniss.it

DIPARTIMENTO DI AGRARIA

November, 20th 2023

Objective

To show how different tools available at country level and developed for specific regions can be aligned to perform comparable estimates

SIMPLIFIED LCA!!

THE TOOLS: qualitative description (Atzori et al., 2021)

Country	Production	Inputs (LCI), n	Detail Flock profile	Output Impact Categories	Approach IPCC	Crops and GHG coeficiencies	OUTCOMES
FRANCE	Milk/meat	82	Annual	ALL Imp. Cat. including Cseq.	Tier 2, IPCC 2019	Detailled	Software dashboard
Spain	Milk/meat	83	Annual	ALL Imp. Cat. including Cseq.	Tier 2, IPCC 2019	Detailled	Spreadsheet
Italy	Dairy only	25	Annual	Only CFP	Tier 2, IPCC 2019	Generic	Webapp and GIS online
Ireland	Meat Only	100	Monthly	ALL Imp. Cat.	Tier 2, IPCC 2006	Medium choice	Spreadsheet
	FRANCE Spain	FRANCE Milk/meat Spain Milk/meat Italy Dairy only	FRANCE Milk/meat 82 Spain Milk/meat 83 Italy Dairy only 25	Image: FRANCEMilk/meat82AnnualSpainMilk/meat83AnnualSpainMilk/meat83AnnualItalyDairy only25Annual	Image:	Impact CategoriesImpact CategoriesIPCCFRANCEMilk/meat82AnnualALL Imp. Cat. including Cseq.Tier 2, IPCC 2019SpainMilk/meat83AnnualALL Imp. Cat. including Cseq.Tier 2, IPCC 2019SpainMilk/meat83AnnualALL Imp. Cat. including Cseq.Tier 2, IPCC 2019ItalyDairy only25AnnualOnly CFPTier 2, IPCC 2019IrelandMeat Only100MonthlyALL Imp. Cat.Tier 2, IPCC 2019	Impact profileImpact CategoriesIPCCand GHG coeficienciesFRANCE Milk/meatMilk/meat82AnnualALL Imp. Cat. including Cseq.Tier 2, IPCC 2019DetailledSpain CoeficienciesMilk/meat83AnnualALL Imp. Cat. including Cseq.Tier 2, IPCC 2019DetailledJairy only25AnnualOnly CFPTier 2, IPCC 2019Generic IPCC 2019Italy Meat Only100MonthlyALL Imp. Cat.Tier 2, IPCC 2019Medium

TOOL COMPARISON: data collection and analysis

<u>Tool</u>	Farms	Atom Ba	
		Farms	Runs (each farm x 4 tools)
France	3 milk/3 meat 🦳		
Italy	3 milk/3 meat	12 dairy	48 dairy
Spain	3 milk/3 meat	12 meat	48 meat
Ireland	n.a. /3 meat	24 total	96 total
Romania	3 milk/ n.a.		

Assumptions:

- Mixed and Specialized farming systems both in milk and meat farms \checkmark
- Farms were randomly selected, not country average
- Comparison w/out a reference values, no complete LCA \checkmark
- Equal input and outputs in all tools

Statistical Analysis: PROC GLM SAS: Yij = $\mu + \alpha i + \beta j + \alpha \beta_{ii} + \gamma + \epsilon i$ α = Tool (i = 4); β = Country (j= 3 o 4); $\alpha\beta$ = Tool*Country Estimate evaluation among tools, Mean Bias & RMSPE (Tedeschi, 2006)

November, 20th 2023

DATASET DESCRIPTION

		Ewes n°	Land ha	Milk/ewe L/yr	Stock rate ewe/ha	Purch. feeds kg/ewe	Fertilizers kg/ha	Fuel Kg/ha	Eletricity Kwh/yr
DAIRY FARMS	Mean	497	185	202	6.1	137	78	101	10640
(n=12)	SD	444	426	131	3.0	45	78	120	8850
	Max	1900	1600	479	12.9	205	352	432	27600
	Min	132	14	16	1.2	58	0	1	420
			-	Meat per ewe	<u>,</u>				
				kg/yr					
MEAT FARMS	Mean	746	89	33	8.4	112	67	76	2265
(n=12)	SD	692	56	12	5.4	79	142	122	2743
	Max	2214	172	51	21.1	263	114	136	8925
	Min	104	15	17	1.1	27	0	26	0

RESULTS: Comparison of estimates per each hotspot,

		CO ₂ eq/kg	ot Carcace Moight				
	Country*	Tool*		Country*	Tool*		
CF	< 0.001	0.01		< 0.001	<0.001		
Allocation	NS	<0.001		-	-		Relevant Differences
Enteric methane	0.05	NS		< 0.001	<0.001	-	for approach
Manure emiss.	NS	<0.001		<0.01	<0.001		
Crop& fertilizers	NS	<0.01		< 0.01	0.03		
Feed purchased	<0.01	0.01		NS	NS		Small Differences
Electricity	0.05	<0.001		0.01	NS		due to emission coefficients
Fuel	0.06	NS		<0.001	NS		

*Interaction Country x tool: not significative

November, 20th 2023

Alignment proposal

Tool building phase (Task 2) for improvement:

- Input: combined input collection from each tool
- Enteric and Manure: align intake algorithms \rightarrow estimation of CH₄ and N emissions
- Manure: check for excretion and align emission coefficients
- Fuel: align emission coefficients
- Crops: align land type and emission coefficients
- Fertilizers: align fertilizers choice
- Purchased feed: align inventories of emission coefficients
- Electricity: consider electric mix, not possible align emission coefficients

Align equations for FPCM and allocations .

Functional units and Allocation

GWP Conversion:

Methane: 27.9 CO_{2eq} and N_2O_2 273 CO_{2eq} (IPCC, 2021)

Functional units:

Meat: Carcass weight: (breed coefficients of carcass yield) Milk: Fat and protein corrected milk from Pulina and Nudda (2005) or INRA (2018)

Allocation method for milk:

- Biophysical based on nutritional requirements
- IDF (2015) → All, % 1-6.04 *(meat/milk)

Methane emissions: 2 options

- IPCC dairy cattle approach
- GEI = DMI intake X 18.45 MJ/kg of DM X Ym (6.7% sheep)

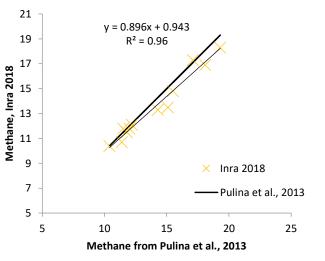
DMI =

Pulina 2013; or INRA 2018;

Adoption of Ym that varies with Digestibility like cattle?

Methane from Intake level: (Sauvant and Noziere 2013) (CAP2ER)

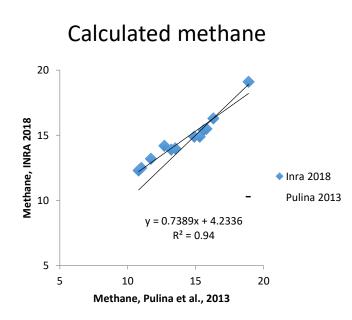
CH_{4 (g/kg Digestible Organic Matter)} = 45,2 - 6,66*IL + 0,75*IL² + 19,65*Con% - 35*Con% - 2,69*IL*Con%


Consistent also with Vermorel (2008)

Dairy farm intake and methane emission comparison

		Pulina	et al., 2013			11	NRA 2018	
Farm Name	Ewes DMI	Ewes CH4	Rams CH4	Replacem. sheep CH4	Ewes DMI	Ewes CH4	Rams CH4	Replacem. sheep CH4
	kgMS/year	kgCH4/year	kgCH4/year	kgCH4/year	kgMS/ year	kgCH4/year	kgCH4/year	kgCH4/year
FR_Cas-type OL PA04	720.9	15.5	9.1	8.3	675.1	14.8	9.7	10.5
FR_Cas-type OL ROQ02	923.5	19.3	14.8	9.9	863.4	18.3	14.6	12.3
FR_Cas-type OL ROQ03	848.5	18.1	15.0	10.0	772.0	16.9	14.7	12.3
IT Arca Farm	573.3	12.2	14.3	5.8	567.3	12.1	13.1	8.5
ITCugusi Farm	558.6	12.0	14.5	6.6	548.0	11.8	13.5	9.0
IT_Farm Manconi	544.5	11.5	13.2	3.8	561.9	11.8	13.5	7.2
IT_ Farm Riu	545.8	11.8	14.5	6.3	530.6	11.5	13.6	8.8
RO_Chicos	511.4	11.4	17.0	9.2	463.3	10.7	14.9	11.4
RO_Dambovita	462.8	10.4	13.4	0.0	461.8	10.4	12.5	0.0
RO_Ovis	685.3	15.1	21.9	11.8	582.6	13.5	18.9	14.2
SP_CL1	768.0	0.0	0.9	0.0	924.6	0.0	7.2	0.0
SP_CL3	971.9	17.1	18.6	6.6	980.7	17.3	18.0	10.1
SP_PV1	650.1	14.3	16.3	7.4	586.9	13.3	14.6	9.6
Average	674.2	13.0	14.1	6.6	655.3	12.5	13.7	8.8

Calculated methane



November, 20th 2023

Meat farms intake and methane comparison

	Pulina e	et al., 2013	INRA	2018
	DMI			Sheep CH4
		Sheep CH4	DMI	kg
	kgMS/ewe/	kg	kgMS/ewe/y	CH4/ewe/ye
Farm name	year	CH4/ewe/year	ear	ar
FR_Céréalier Ovin fourrager intensif	885	18.9	898	19.1
FR_Préalpin spécialisé sédentaire	682	14.9	687	14.9
FR_Spécialisé Semi-extensif zone défavorisée	750	16.3	754	16.3
IR_13512	701	15.3	676	14.9
IR_21121	717	15.6	702	15.4
IR_26270	739	15.8	721	15.5
SP_MP	618	13.5	651	14.0
SP_PZ	632	12.7	717	14.2
SP_SI S.C.	606	13.2	646	13.9
IT D'agostino	556	11.7	651	13.2
IT MACRINI	526	11.0	618	12.5
IT FARINDOLAGRI	521	10.8	609	12.3
Average	661.1	14.1	694.1	14.7

Manure emissions:

Methane: equation 10.23 IPCC 2019: EF = (VS x 365) x (B0 x 0,67 x ∑ MCF/100 x % MS (management system))

Nitrogen balance

- Excreted = Intake requirements
- Decandia et al. (2013)
- Fixed values of Nitrogen excretion per head

IPCC, 2019

Emission factors Based on manure management system

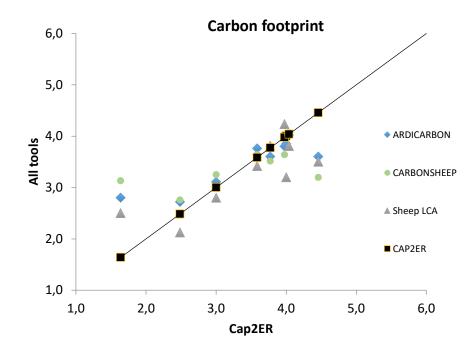
Detailed as much as possible!

Other emission coefficients

Fertilizers:

Direct: 1% N losses as N-N₂O + Nvol + Nres + N leach \rightarrow lpcc, 2019; **Indirect:** 3.22 kg of CO2 eq/ kg of N, P, K.

Purchased feeds: aligned to AgriBalyse 3.1 or Ecoinvent


Diesel: 3.25 kg CO_{2eq}/kg fuel

Energy kg CO₂/kWh: España: 0,3278, France: 0,0855; Italy : 0,3745, Rumanía: 0,4505

Plastic, Machinery, facilites: not considered, cut-off 1%

November, 20th 2023

Simulation with aligned tools for dairy farms

	CAP2ER	ARDICARBON	CARBONSHEEP	SHEEP LCA
CF_kgFPCM	4.21	4.24	4.14	3.99
ENTERIC	2.35	1.68	2.35	2.11
MANUR	0.54	0.37	0.52	0.37
CRP&fer	0.50	0.58	0.34	0.44
FEEDpurch	0.83	0.45	0.60	0.27
Electricity	0.0044	0.04	0.04	0.04
Fuel	0.22	0.30	0.27	0.28

Differences in CF: 1 - 5%

Conclusions

- Alignment can include IPCC (2019) values and equations specifically developed for sheep in European countries
- Alignment would allow reducing differences in estimates among countries
- More evaluations need to be done at territorial level to fit all the production systems and cases
- For the use of software within countries the original more flexible models can be still used
- Is needed a broad agreement amogn institutions to agree on equation changes in order to proceed in common way

Do you have any questions?

Sindy Throude – Institut de l'Elevage (France) Alberto Atzori – UNISS (Italy)

Determining carbon footprint of sheep farms in Europe: first results !

Sindy Throude – Institut de l'Elevage (France) – Action 3 leader

sindy.throude@idele.fr

Determining carbon footprint of sheep farms in Europe: first results !

<u>S. Throude</u>, M. Acciaro, A. Atzori, R. Ruiz, O. Del Hierro, C. Buckley, L. Bragina, T.W.J. Keady, C. Dragomir, M.A. Gras, J.B. Dollé

With the help of 2 French trainees M. Hiez and R. Pellerin

Key figures of the project

LIFE GREEN SHEEP IS:

Determining carbon footprint of sheep farms in Europe: first results of the LIFE Green Sheep project demonstrative farms involved

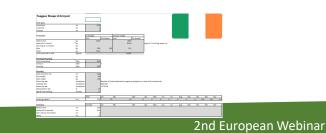
40 partners from 5 European countries

282 innovative farms involved in the implementation of action levers

How determining carbon footprint of sheep farms in Europe ?

• Using tools :

• CAP'2ER[®]



• ArdiCarbon

• SheepLCA

November, 20th 2023

• A sample of 1 355 sheep farms

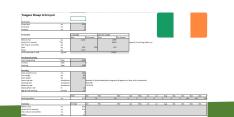
	Meat sheep	Dairy sheep
France	700 - 584	185 - <mark>186</mark>
Spain	30 - 41	60 - 41
Ireland	180 - 180	-
Italy	-	100 - 101
Romania	-	100 - <mark>20</mark>

Nb of farms foreseen – Nb of farms already assessed & analyzed

40

How determining carbon footprint of sheep farms in Europe ?

• Using tools :


• CAP'2ER[®]

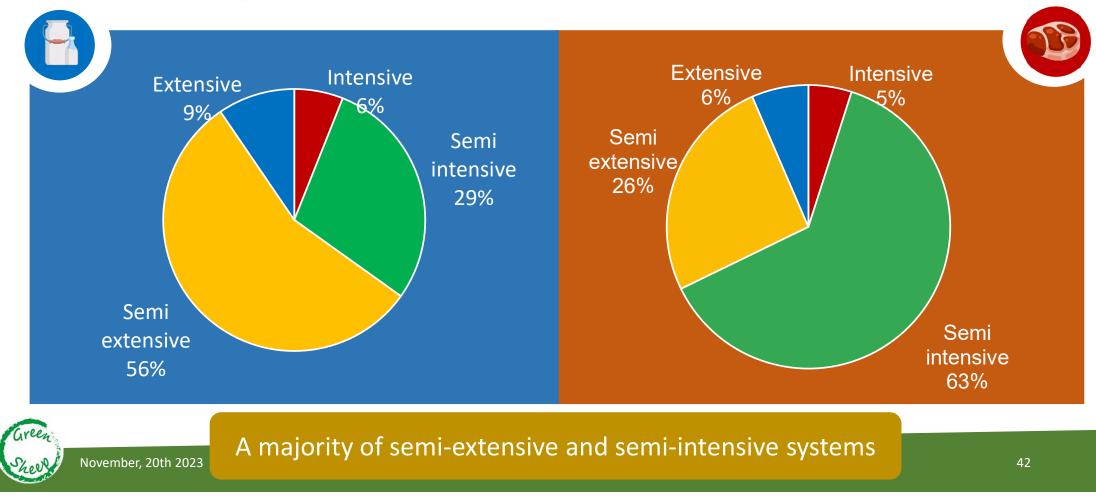
	La p (cha 1902) Biolo CAFACT permit as activate an include include of character and and a notion of character and and a dure exploration at indentifier des ranges de propies
Éleveurs, techniciens, étudiants, grand public	Espace professionnel
Avec CAP'2ER [®] , réalisez en ligne et en quelques minutes l'évaluation environnementale d'une exploitation de ruminants :	Connector-vaux à Tapplication CMP3ER*:
N N	identifiant * Netroja
	Mot de passe *
Je renseigne Je lance Je positionne	Se connector
mes données le calcul l'exploitation	CAPOCR [®] - Informations Inclusions
	> La Perme Lablee Das Carbone
/ /	> LFE Boot Carbon
 Lancer un diagnostic CAP'2ER 	 Protoc CARBON AGR Association Perfolia

• ArdiCarbon

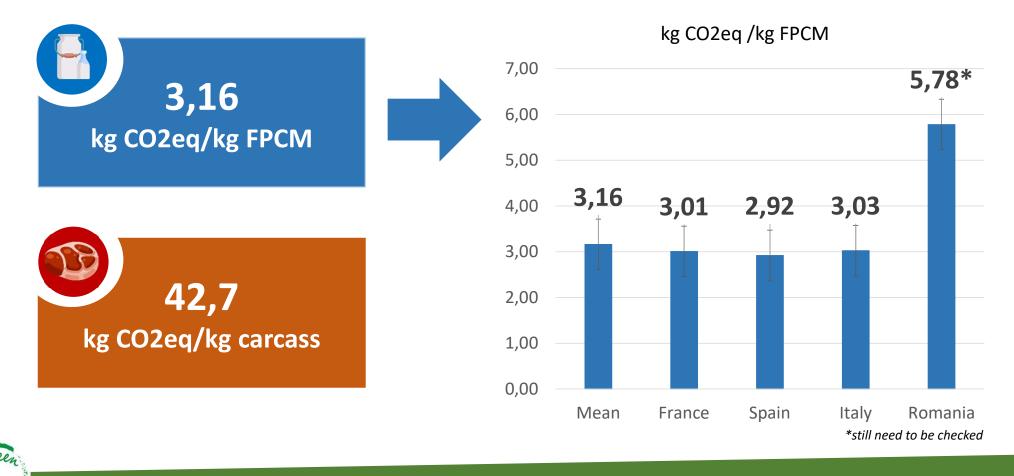
• SheepLCA

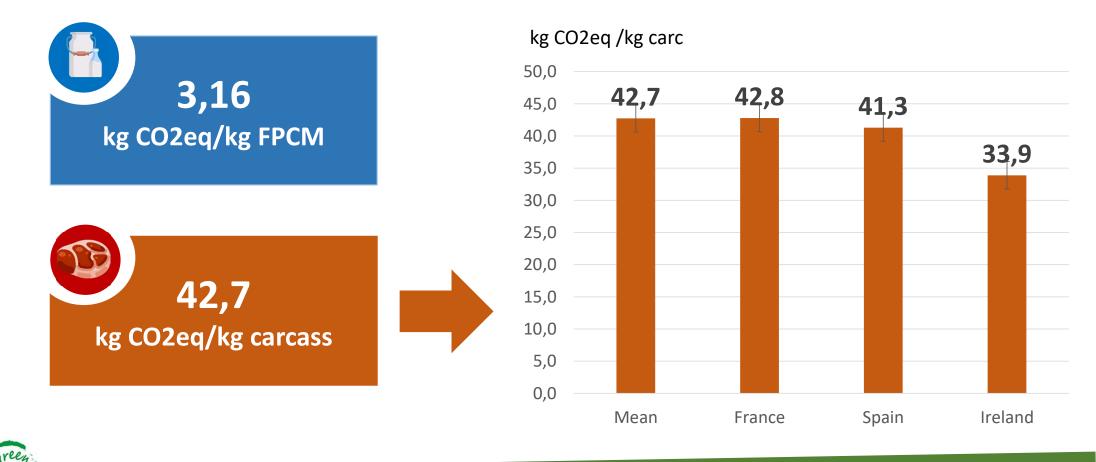
• A sample of 1 355 sheep farms

	Meat sheep	Dairy sheep
France	700 - 584	185 - <mark>186</mark>
Spain	30 - 41	60 - 41
Ireland	180 - 180	-
Italy	-	100 - 101
Romania	-	100 - 20


Nb of farms foreseen – Nb of farms already assessed & analyzed

Presentation of the results of these **1 153 farms**


Br. Al >


A EU-scale sample with a diversity of rearing sheep systems

Average EU sheep milk and sheep meat carbon footprint with high variability within each country

Average EU sheep milk and sheep meat carbon footprint with high variability within each country

November, 20th 2023

Why do we have differences between countries ? Example of dairy sector

	France	Spain	Italy	Romania
CF/ kg FPCM	3,01 (a)	2,92 (a)	3,03 (a)	5,78 (b)
CF /ha	6 345 (a)	27 837 (b)	3 285 (a)	2 070 (a)
Milk production litres/ewe	254 (bc)	313 (c)	183 (b)	53 (a)
UAA (ha)	80 (b)	58 (a)	106 (c)	119 (c)

Significant differences for Romania, when CF is expressed per unit of product, due to a low milk production

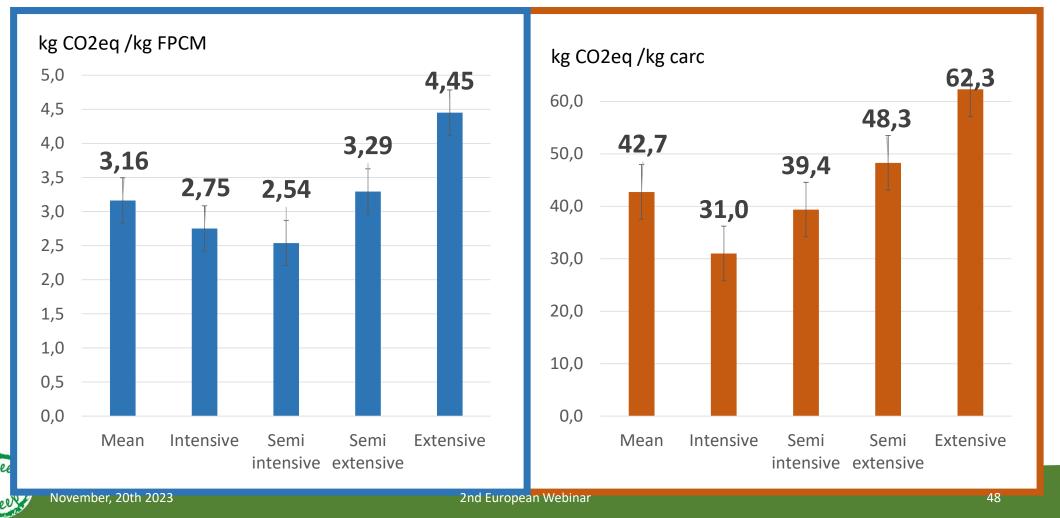
// November, 20th 2023

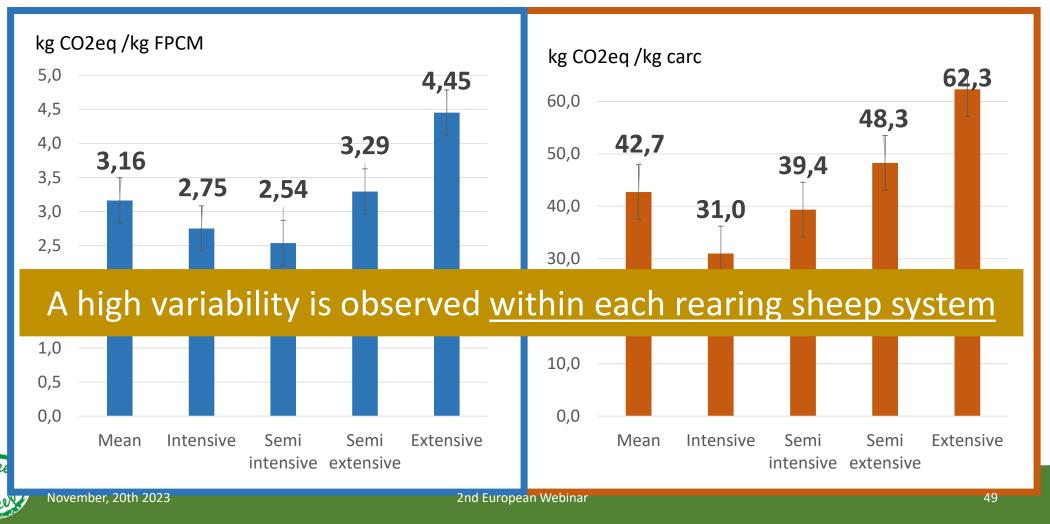
Why do we have differences between countries ? Example of dairy sector

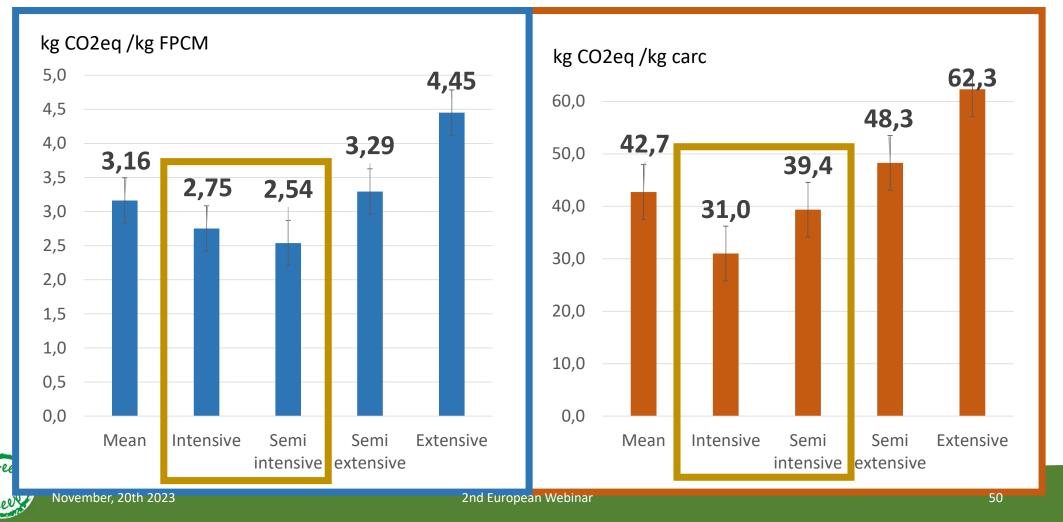
	France	Spain	Italy	Romania
CF/ kg FPCM	3,01 (a)	2,92 (a)	3 <i>,</i> 03 (a)	5,78 (b)
CF /ha	6 345 (a)	27 837 (b)	3 285 (a)	2 070 (a)
Milk production litres/ewe	254 (bc)	313 (c)	183 (b)	53 (a)
UAA (ha)	80 (b)	58 (a)	106 (c)	119 (c)

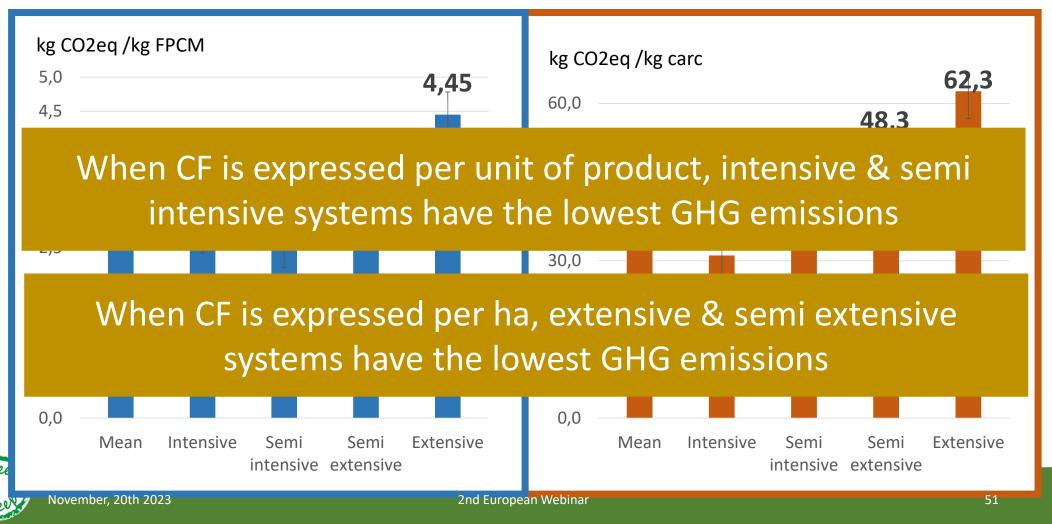
Significant differences for Spain, when CF is expressed per ha, due to a low UAA (semi-intensive & intensive sheep systems)

November, 20th 2023

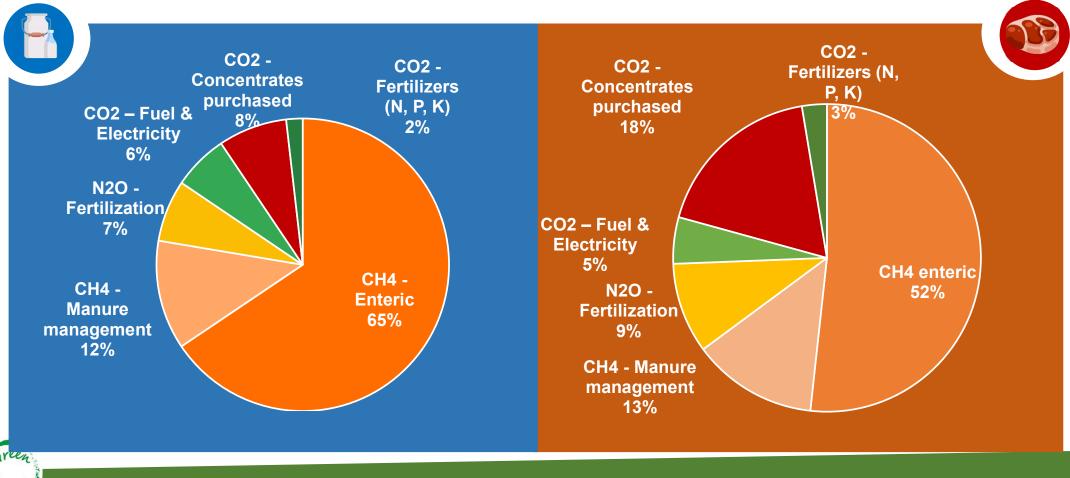

Why do we have differences between countries ? Example of dairy sector

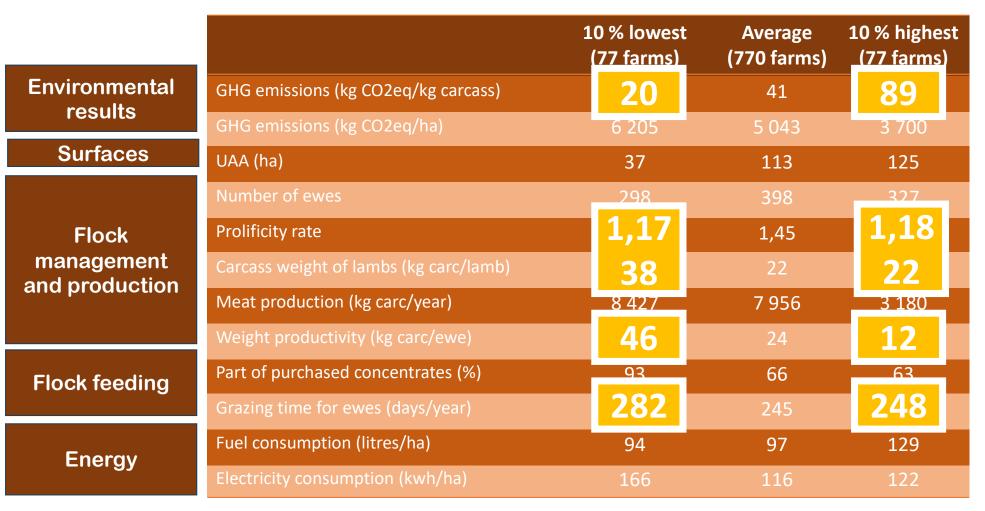

	France	Spain	Italy	Romania
CF/ kg FPCM	3,01 (a)	2,92 (a)	3,03 (a)	5,78 (b)
CF /ha	6 345 (a)	27 837 (b)	3 285 (a)	2 070 (a)
Milk production litres/ewe	254 (bc)	313 (c)	183 (b)	53 (a)
UAA (ha)	80 (b)	58 (a)	106 (c)	119 (c)


Effect of the functionnal unit and rearing sheep systems



November, 20th 2023





Enteric fermentation and manure management are the main sources of GHG

November, 20th 2023

What are the technical results for the 10% farms with the lowest emissions?

What are the main factors explaining GHG emissions results ? <u>When expressed per ha</u>

According to systems, 5 factors explain **at least 60% of the GHG emissions :**

- Stocking rate
- N balance
- Mineral & organic nitrogen
- Energy consumption (fuel & elec)
- Prolificacy rate (only for semiextensive systems)

According to systems, 5 factors explain **at least 60% of the GHG emissions :**

- Stocking rate
- Mineral & organic nitrogen
- N balance
- Weight productivity
- Prolificacy rate

Conclusion

A good overview of the average EU sheep milk and sheep meat carbon footprint based on an important sample of farms

A high variability of CF results whithin each system → Explained by different practices : optimized ones lead to less GHG emissions

Importance of the funtionnal unit \rightarrow Need to analyse the results expressed per unit of product AND per ha

This work is still in progress and these are preliminary results

- The classification of sheep systems need to be consolidated
- The analysis of intra-system results needs to be more in-depth
- Final results with sustainability aspects by the end of this year, considering also carbon storage & sustainability performances

Do you have any questions?

Sindy Throude – Institut de l'Elevage (France)

Testing mitigation actions to reduce GHG emissions from sheep farming in Europe

Sindy Throude – Institut de l'Elevage (France) – Action 4 leader

sindy.throude@idele.fr

Testing mitigation actions to reduce GHG emissions from sheep farming in Europe

<u>S. Throude</u>, M. Acciaro, A. Atzori, R. Ruiz, O. Del Hierro, C. Buckley, L. Bragina, T.W.J. Keady, C. Dragomir, M.A. Gras, J.B. Dollé

With the help of 2 French trainees M. Hiez and R. Pellerin

Review of existing mitigation practices

- 194 mitigation strategies screened and evaluated from previous projects
 - 69 for dairy farms, 81 for meat farms, 44 for both
- Classification of theses practices into 8 detailed topics
 - 2 main ones : sheep flock & surfaces management



- Very few quantifications of the impact of mitigation practices in sheep farming !
 - →Need of implementing and testing mitigation practices and assessing their GHG, environmental & economic impacts

November, 20th 2023

Monitoring of a large EU-scale sample of 282 innovative sheep farms

Since assessments and carbon action plans are still on-going, following results are based on a sample of **126** farms (identified in italics)

November, 20th 2023

Implementation of mitigation practices and monitoring

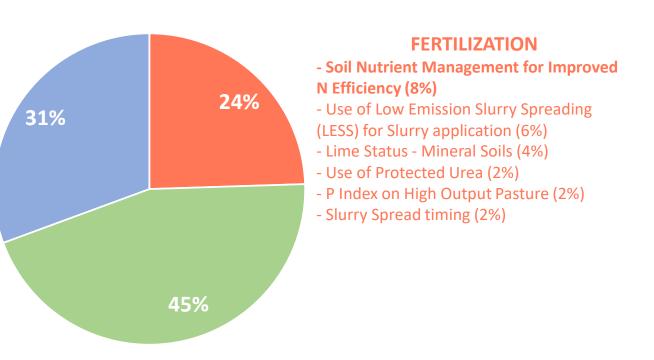
Initial assessment of CF and also other environmental impacts and sustainability indicators

Carbon action plan : A combination of one or several mitigation practices identified \rightarrow Assessment of the impacts (technical, environmental, economic...) of these practices

Implementation of mitigation practices : Monitoring during 3 years

Final assessment at the end of the project Objective : an average GHG mitigation of -12%

November, 20th 2023

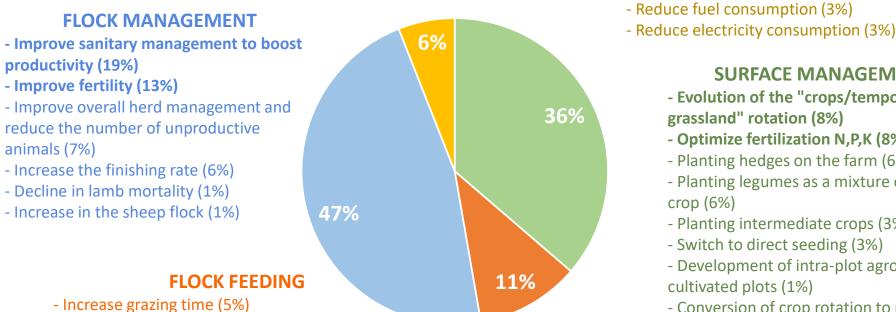

For Irish farms, mainly mitigation practices based on overall surface management (12 carbon action plans)

FLOCK MANAGEMENT

- Use of Eurostar Ram on Lowland Flock (10%)
- Lambs weaned per ewe per Year (6%)
- Pregnancy rate of ewes and hoggets to ram (6%)
- % of first time lambers as hoggets (6%)
- Animal Health (3%)

SURFACE MANAGEMENT

- Managing the farm for grazing season length (16%)
- Grazing management (14%)
- Improving hedgerow management for carbon (and Biodiversity) (6%)
- Forestry Commercial Conifer (5%)
- Proportion of Clover in Sward (2%)
- Planting hedges on the farm (2%)



(%) means the number of times this practice has been identified / number of practices identified

November, 20th 2023

For French meat farms, mainly mitigation practices based on herd and surface management (61 carbon action plans)

- Optimize concentrate consumption (3%)
- Increase protein autonomy (2%)
- Improve forage quality (1%)

- Optimize fertilization N,P,K (8%)
- Planting hedges on the farm (6%)
- Planting legumes as a mixture or pure crop (6%)

ENERGY AND MANURE MANAGEMENT

SURFACE MANAGEMENT

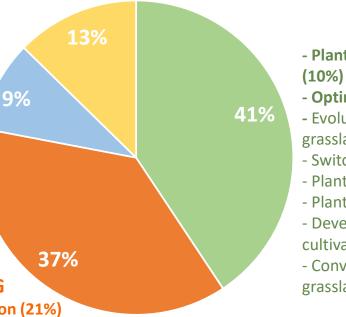
- Planting intermediate crops (3%)
- Switch to direct seeding (3%)
- Development of intra-plot agroforestry in cultivated plots (1%)
- Conversion of crop rotation to permanent grassland (1%)

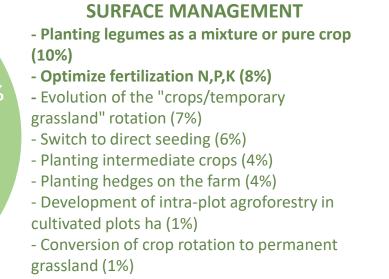
(%) means the number of times this practice has been identified / number of practices identified

November, 20th 2023

For French dairy farms, mainly mitigation practices based on surface management & herd feeding (53 carbon action plans)

ENERGY AND MANURE MANAGEMENT


- Reduce electricity consumption (4%)
- Reduce fuel consumption (3%)
- Improving manure spreading methods (2%)
- Methanization of animal manure (2%)


FLOCK MANAGEMENT

- Improve sanitary management to boost productivity (3%)
- Improve fertility (3%)
- Improve overall herd management and reduce the number of unproductive animals (3%)

FLOCK FEEDING

- Optimize concentrate consumption (21%)
- Increase grazing time (9%)
- Improve forage quality (5%)
- Increase protein autonomy (2%)

(%) means the number of times this practice has been identified / number of practices identified

November, 20th 2023

Do the main topics of mitigation practices differ according to the type of system?

The same mitigation practices topics emerge for each rearing system : surface management & flock feeding

Then, energy and manure management & flock management

The same mitigation practices topics emerge for most of the rearing systems : surfaces management & Flock management

Except for intensive systems : Energy & manure management

Different mitigation practices according to the country / sector / rearing sheep system

November, 20th 2023

For French meat farms, an average GHG mitigation of 13,3%

	Intensive (3 farms)	Semi intensive (39 farms)	Semi extensive (14 farms)	Extensive (5 farms)	National average (61 farms)
GHG emissions mitigation	-4,0%	-13,1%	-15,2%	-15,2%	-13,3%
Carbon gains (t CO2/year)	32	182	148	112	157
Carcass production trend	+ 3,2 %	+ 1,9 %	+ 5,3 %	+ 18,0 %	+ 3,1 %
Partial budget/ewe	+ 7€	+ 21€	+ 7€	+ 11€	+ 19€

• 12% reduction target achieved but depending on the rearing systems

For French meat farms, an average GHG mitigation of 13,3%

	Intensive (3 farms)	Semi intensive (39 farms)	Semi extensive (14 farms)	Extensive (5 farms)	National average (61 farms)
GHG emissions mitigation	-4,0%	-13,1%	-15,2%	-15,2%	-13,3%
Carbon gains (t CO2/year)	32	182	148	112	157
Carcass production trend	+ 3,2 %	+1,9%	+ 5,3 %	+ 18,0 %	+ 3,1 %
Partial budget/ewe	+ 7€	+ 21€	+ 7€	+ 11€	+ 19€

- 12% reduction target achieved but depending on the rearing systems
- With not always a increasing of the production

November, 20th 2023

For French meat farms, an average GHG mitigation of 13,3%

	Intensive (3 farms)	Semi intensive (39 farms)	Semi extensive (14 farms)	Extensive (5 farms)	National average (61 farms)
GHG emissions mitigation	-4,0%	-13,1%	-15,2%	-15,2%	-13,3%
Carbon gains (t CO2/year)	32	182	148	112	157
Carcass production trend	+ 3,2 %	+1,9%	+ 5,3 %	+ 18,0 %	+ 3,1 %
Partial budget/ewe	+ 7€	+ 21€	+ 7€	+ 11€	+19€

- 12% reduction target achieved but depending on the rearing systems
- With not always a increasing of the production
- With economic gains

For French dairy farms, an average GHG mitigation of 9,2%

	Semi intensive (22 farms)	Semi extensive (16 farms)	Extensive (15 farms)	National average (53 farms)
GHG emissions mitigation	- 7,6%	- 9,8%	- 9,2%	-9 ,2%
Carbon gains (t CO2/year)	77	69	38	61
Milk production trend	+ 4,3 %	- 2,8 %	+ 2,7 %	- 2,1 %
Partial budget/ewe	+ 15 €	+ 29€	+ 24€	+ 21€

• 12% reduction target not reached yet

For French dairy farms, an average GHG mitigation of 9,2%

	Semi intensive (22 farms)	Semi extensive (16 farms)	Extensive (15 farms)	National average (53 farms)	
GHG emissions mitigation	- 7,6%	-9,8%	- 9,2%	-9 , 2%	
Carbon gains (t CO2/year)	77	69	38	61	
Milk production trend	+ 4,3 %	- 2, 8%	+ 2,7 %	- 2,1 %	
Partial budget/ewe	+ 15 €	+ 29€	+ 24€	+ 21€	

- 12% reduction target not reached yet
- With not always a increasing of the production

November, 20th 2023

For French dairy farms, an average GHG mitigation of 9,2%

	Semi intensive (22 farms)	Semi extensive (16 farms)	Extensive (15 farms)	National average (53 farms)
GHG emissions mitigation	- 7,6%	-9,8%	- 9,2%	-9,2%
Carbon gains (t CO2/year)	77	69	38	61
Milk production trend	+ 4,3 %	-2,8%	+ 2,7 %	- 2,1 %
Partial budget/ewe	+ 15 €	+ 29€	+ 24€	+21€

- 12% reduction target not reached yet
- With not always a increasing of the production
- With economic gains

Conclusion

Main topics of mitigation practices

- Surfaces

 management and
 flock management
 for meat sheep
 farms
- Surfaces management and flock feeding for dairy sheep farms

Mitigation practices are different according to the country / sector / rearing system \rightarrow Need to adapt the practices / no single way to reduce emissions

A mitigation of 12% of GHG in sheep farming is possible !

- With a higher technical efficiency, and a higher competitiveness
- With economic gains !

This work is still in progress and these are preliminary results

- Final results with sustainability aspects by the end of this year
- Considering also carbon storage

Do you have any questions?

Sindy Throude – Institut de l'Elevage (France)

Round table discussion « How to disseminate the project results and inform farmers and advisers widely ? »

Round table discussion with :

Cathal Buckley from Ireland Gabriella Serra from Italy Sindy Throude from France Roberto Ruiz from Spain Catalin Dragomir from Romania

November, 20th 2023

Rearing sheep systems : Mainly lowland and hill system

DEMONSTRATIVE FARMS 180 meat sheep farms INNOVATIVE FARMS 20 meat sheep farms

ADVISORS 30 advisors trained

SPAIN Coordinator NEIKER

INSTITUTO TECNOLÓGICO AGRARIO

Rearing sheep systems : Mainly grassland systems in the Basque Country and Navarre Mainly indoor sheep system in Castille y Leon

DEMONSTRATIVE FARMS 30 meat sheep farms 60 dairy sheep farms INNOVATIVE FARMS 10 meat sheep farms 15 dairy sheep farms

ADVISORS 20 advisors trained

ITALY Coordinator AGRIS

Rearing sheep systems : Mainly Grassland

DEMONSTRATIVE FARMS 100 dairy sheep farms INNOVATIVE FARMS 16 dairy sheep farms ADVISORS 33 advisors trained

November, 6th 2023

ROMANIA Coordinator IBNA

Rearing sheep systems : Grassland based

DEMONSTRATIVE FARMS 100 dairy sheep farms INNOVATIVE FARMS 10 dairy sheep farms ADVISORS 12 advisors trained

November, 6th 2023

FRANCE Coordinator IDELE

INSTITUT DE **idele**

NTERPROFESSION

Rearing sheep systems : Mixed systems with grass, forages and cereals for dairy sheep Grassland and pastoral systems for meat sheep

DEMONSTRATIVE FARMS 700 meat sheep farms 185 dairy sheep farms INNOVATIVE FARMS 155 meat sheep farms 56 dairy sheep farms

ADVISORS 72 advisors trained

CHAMBRES

France Brebis Laitière D'AGRICULTURE

November, 6th 2023

LIFE Green Sheep - EU project monitoring meeting n°15

LA COOPÉRATION AGRICOL

How do the farmers see the climate change issue in your country ?

What are the main incentives/arguments for farmers to engage low carbon transition in your country ?

Did you encounter difficulties to motivates farmers and advisors and how did you solve this problems ?

What do we need to upscale this initiative ?

Do you have any questions?

Conclusion

Caroline Guinot – Ressources Agro (France)

November, 20th 2023

SAVE THE DATE : NETWORKING EVENT Tuesday 06 February 2024 – Brussels

UPSCALING LOW CARBON LIVESTOCK FARMING IN EUROPE

- Exchanging and capitalizing on former and existing European projects
- Identifying collectively the best practices of dissemination and assimilation by advisors, farmers and the sector's industries
- Getting in touch and forecasting new projects for tomorrow

Thank you for listening and please stay connected a few minutes for a survey ©

LIFE GREEN SHEEP : for a low carbon and sustainable sheep

farming

LIFE19 CCM/FR/001245 - LIFE GREEN SHEEP

TECHNOLOGY ALLIANCE

