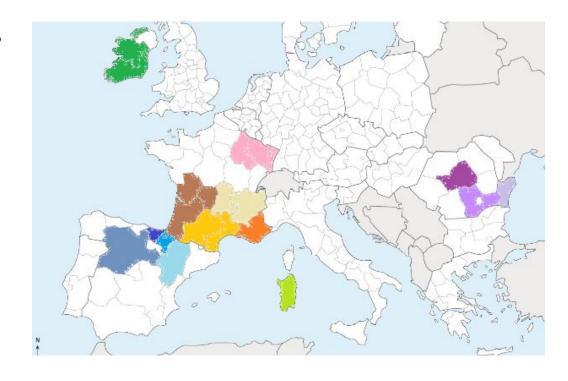


Lyubov Bragina, Cathal Buckley and Tim Keady

The 75th EAAP Annual Meeting, Florence, Italy



LIFE Green Sheep Project

Small ruminant production accounts for 7.4% of Global GHG emissions.

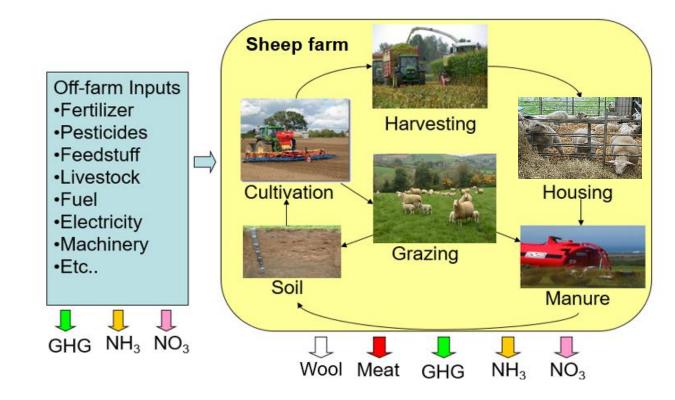
- The project involves France, Ireland, Italy, Romania and Spain.
- These 5 countries represent 47% of the EU sheep meat and 63% of the sheep milk production.
- Aim is to reduce by 12% the carbon footprint of sheep meat and milk while ensuring farm sustainability

Irish Sheep Sector Overview

- 2.56 m breeding ewes
- 34,519 sheep farms
- 4th largest sheep meat exporter worldwide the largest net exporter in the EU
- 400% self-sufficient in sheep meat production
- 80% is exported to France, UK, Germany, Sweden and Belgium
- 77,000 tonnes of sheep meat were exported an export value of €440 million

Sheep Sector Emissions

- Ireland committed reduce the GHG emissions by 51% by 2030
- Aim is for carbon neutrality by 2050
- In 2023, Ireland emitted 55 Mt CO₂ eq, of which 38% came from Agriculture.
- Sheep responsible for c. 7% of agricultural emissions (enteric fermentation and manure management are main sources)
- Emissions from agriculture decreased by 4.6% in 2023



Teagasc Irish Sheep LCA

- System boundary "cradle to farm gate"
- IPCC and Irish based equations
- Animal categories: mature ewes, lambs, hoggets and rams
- Detailed monthly data collected on:
- on farm structure
- animal performance and breeding
- animal movements
- all inputs
- all outputs

Functional unit

 CO₂ eq per 1 kg live weight, carcass weight and per ha

Carbon Sequestration

- No approved methodology exist
- Petersen et al. (2013) approach
- This method considered two C fluxes:
- 1) from the soil to the atmosphere during the decomposition of soil organic matter, and
- 2) from the atmosphere to the soil, when atmospheric C in the form of carbon dioxide (CO₂) is removed or sequestered by land

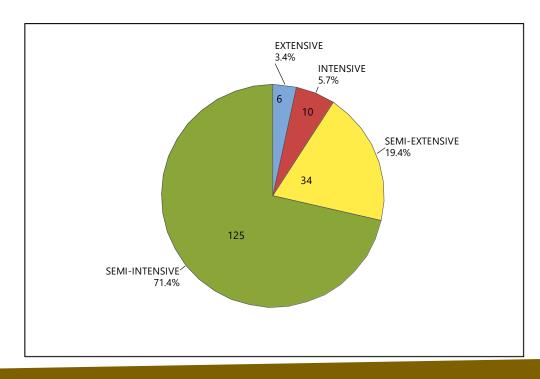
It is estimated that 9.7% of C was added to the soil in the form of plant residues (above and below-ground), application of animal manures, and direct deposition of faecal matter and urine will be sequestered in a 100-years perspective.

Irish Sheep farms sample

 Sample of 175 specialist sheep farms, which are population weighted to represent 21037 sheep farms on a national basis

EU classification of sheep meat farms

Shepherded: Continuous presence of the shepherd with the sheep

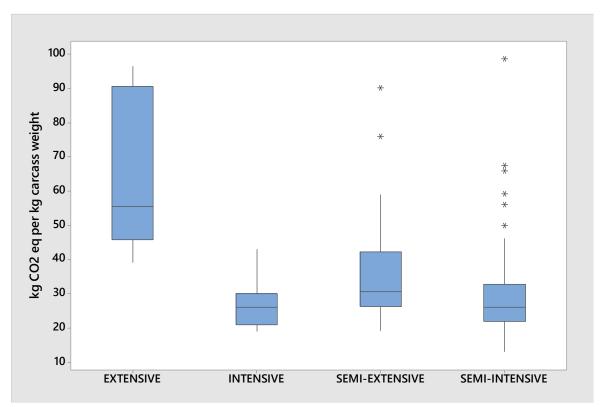

Extensive: <1 ewe/ha

Semi-Extensive: 2-4 ewes/ha

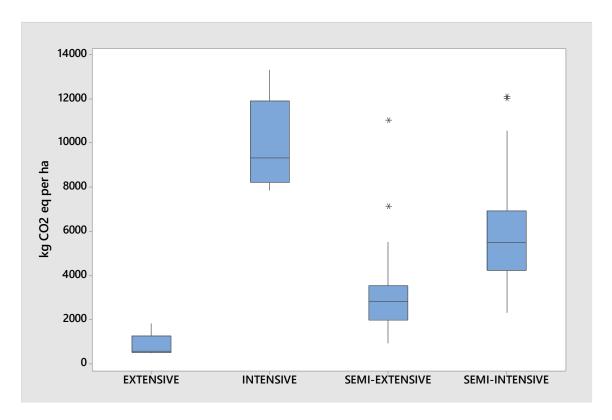
Semi-Intensive: 5-11 ewes/ha

Intensive: >12 ewes/ha

Farms distribution


Technical Farm Performance Indicators

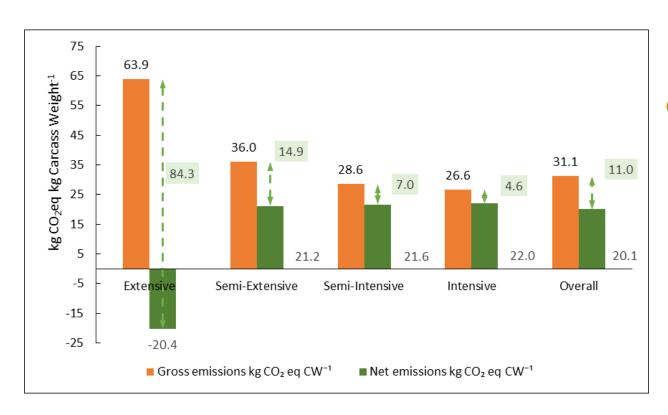
Variable	Extensive Farms	Semi- Extensive Farms	Semi-Intensive Farms	Intensive Farms	P-Value
Farm size, ha	127	33	20	24	0.000
Stocking rate, ewes ha ⁻¹	1.05	3.30	7.18	13.29	0.000
Lambs reared ewe joined, n	0.97	1.39	1.44	1.50	0.017
CW sold, kg ha ⁻¹	13	90	216	385	0.000
Concentrates fed, kg ewe ⁻¹	53	126	98	74	NS
Inorganic N input, kg ha ⁻¹	18	29	66	93	0.000
Farm fuel, L ha ⁻¹	15	47	122	162	0.016
Electricity, kwh ha ⁻¹	13	140	233	321	0.020

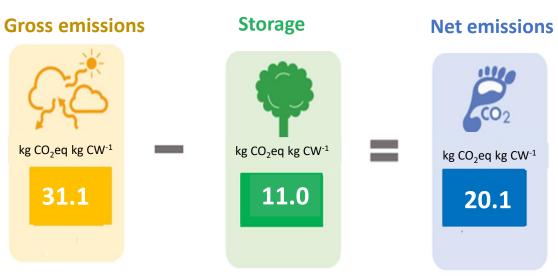


AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

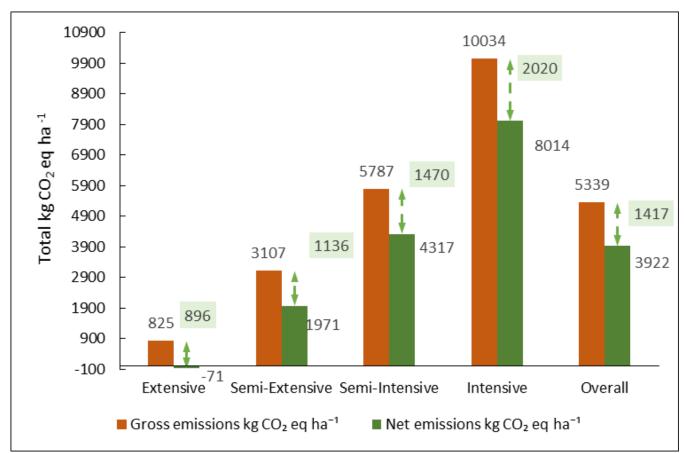
GHG Emissions Distribution Between Farm Systems

Distribution of GHG emissions per kg of product across sheep farm systems, kg CO₂ eq kg CW⁻¹ (min 13.0 and max 98.6)




Distribution of GHG emissions per hectare across sheep farm systems, kg CO₂ eq ha⁻¹ (min 457 and max 13291)

GHG Emissions per Carcass Weight (Carbon Footprint per kg product)


Mean GHG emission per kg carcass weight is 31.1 kg CO_2 eq (20.1 kg CO_2 eq if include CO_2 sequestration)

35 % offset by carbon storage

GHG Emissions per ha

Storage

Net emissions

kg CO₂ eq ha⁻¹

5339

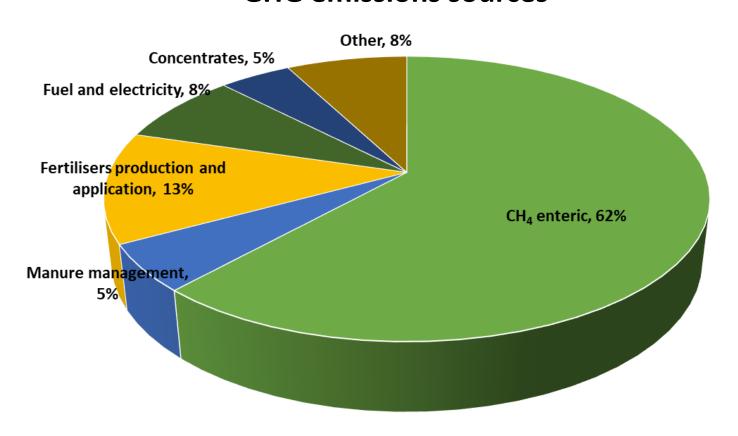
Net emissions

Net emissions

1417

3922

Mean GHG emission per kg ha of sheep forage area is 5339 kg CO₂ eq (3922 kg CO₂ eq if include CO₂ sequestration)



27 % offset by carbon storage

GHG Emissions Sources

GHG emissions sources

Conclusions

- Mean GHG emission is 31.1 kg CO₂ eq per kg of lamb carcass produced
- Significant heterogeneity of GHG emissions between the farm systems and within each individual farm system
- Intensive farms produce less GHG emissions per kg of sheep meat
- Extensive farms produce less GHG emissions per ha
- Trade-offs between productivity and environmental sustainability
- Improving farm efficiency and adopting low-emission technologies can reduce the GHG intensity of sheep meat

Thank you

lyubov.bragina@teagasc.ie https://life-green-sheep.eu/

GHG Mitigation Practices

- 1) Grassland management (protected urea, grass clover swards, optimal soil pH, P and K levels)
- 2) Manure management (using LESS)
- Animal feeding and nutrition (optimise feed formulation)
- 4) Animal health and welfare (improved health, reduced stress, extended animal longevity)
- 5) Animal genetics and breeding

